400-915-3552 武汉诺和诺诚生物科技有限公司湖北服务中心,湖北省细胞服务中心主营细胞储存、基因检测

您的位置: 亲子鉴定

亲子鉴定技术pcr(亲子鉴定技术可靠吗)

0 次浏览 编辑 基因细胞服务中心
2022-11-09 12:56:43


什么是PCR分子技术

DNA(脱氧核糖核酸)分析应用于法医学鉴定是近十年来的事,目前发现的DNA多态位点越来越多,分析技术越来越精巧、简便、快速、经济,实用。世界上有120多个国家和地区已应用DNA分析技术办案,解决刑事(如杀人、强奸)、民事(亲子鉴定)纠纷问题,以及追查尸体身源,包括战争及大型灾难中落难者的个人识别等,个人同一认定接近100%。DNA分析的法医学应用使以往只能检测基因编码的酶或蛋白质水平飞跃到直接检查基因的分子水平,是法学物证检验史上的一场重大的革新。1985年,Mullis发明了聚合酶链反应(polymerasechainreaction,PCR),使DNA的体外复制变成了现实。1988年,Saiki等将耐热DNA聚合酶引入PCR,提高了扩增反应的特异性和效率,简化了操作程序,并实现了DNA扩增的自动化,迅速的推动了PCR的应用和普及。PCR能够在体外快速、特异性的扩增靶DNA,已成为当今最重要的分子生物学技术之一。法医物证应用PCR技术扩增人类基因组DNA中高度多态性位点,扩增产物经过片段长度多态性分析或序列多态性分析研究不同个体间DNA分子水平上的差异及其遗传规律,在个人识别、亲子鉴定中发挥了重要作用。由于PCR能够在短时间内扩增靶DNA至百万拷贝,使生物性检材鉴定的灵敏度得以空前的提高,特别是STR-PCR复合扩增技术,它的个别识别率可达到百亿分子一,灵敏度达到0.1ngDNA即1ul血斑,非常适用于微量及腐败物证的检验。继DNA指纹后,PCR被誉为第二代DNA分型技术,短短几年中,PCR技术已在法医物证鉴定中迅速得以推广和应用。



DNA鉴定技术

一般使用PCR对重复序列进行扩增。如基于PCR的STR(短串联重复序列)技术就是目前的代表技术之一。
基础知识:STR可以看成是人群中的等位基因,但在不同个体中,2条染色体上其重复的长度是不同的(子女承接了来自父母的染色体各一条)。
依此,用几个重复的序列作引物,分别以父母、孩子的任何细胞(通常是白细胞)中的提取的DNA作为模板,每个人就可以扩增出来2条条带(偶尔也有1条带的,是因为正好2条染色体上的重复程度是相同的)。
通过对比分析就可以知道亲子关系(孩子一条带跟父亲的一条相同另一条带根母亲的一条带相同)。如果不是这样那就不是亲生的。
希望你能明白,好运。不理解的话再问吧问题具体一点儿为好。



什么是PCR技术?

PCR 技术已广泛用于核酸的科学研究以及临床疾病的诊断和治疗监测,尤其在感染性疾病诊断方面更有应用价值。它的最大特点就是能不断推 出新形势和新的方法,目前以定量PCR为主,临床较广泛应用的是 荧光定量PCR技术。



亲子鉴定运用了什么技术呢?

简单来说,就是通过血型或DNA测试等鉴定父母与子女之间的亲缘关系



在作DNA亲子鉴定时,从测试者的血滴或口腔粘膜细胞或培育的组织内提取DNA,用限制性内切酶将DNA样本切成

(1)限制酶能将DNA样本切成特定小段,这主要体现了限制酶的专一性,即能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断裂.
(2)探针是指用放射性同位素(或荧光分子)标记的含有目的基因单链DNA片段.根据DNA分子杂交原理,利用特别的“探针”能去寻找基因.
(3)由于体细胞中的染色体有一半来自母亲,另一半来自父亲,因此每个人的条码一半与母亲的条码吻合,另一半与父亲吻合.
(4)①A是高温变性过程,该过程中氢键断裂,DNA分子解旋为单链.
②“PCR”的原理是DNA复制,但其与人体内DNA复制相比,特殊之处有“PCR”在体外发生;需要热稳定DNA聚合酶;不需要解旋酶等.
故答案为:
(1)专一性    
(2)DNA分子杂交
(3)这是由于体细胞中的染色体有一半来自母亲,另一半来自父亲
(4)①DNA分子解旋成单链
②“PCR”在体外发生       酶在高温下起作用



请问下在生物中PCR技术是什么,有什么样的现实应用

聚合酶链式反应,相当于体外的人工DNA复制。可用于亲子鉴定、法医鉴定时将样本DNA扩增,还可用于基因工程中目的基因的获取。



网友:亲子鉴定技术pcr

2.16

知识分子

The Intellectual

亲子鉴定怎么做?经历了哪些发展历程?“滴血”是否真的能“认亲”?| 图源:pixabay.com

编者按

最近,“徐州丰县生育八孩女子” 事件引发了舆论热议,在关心神志不清、语言模糊的当事人的同时,广大网友还一直在监督和跟进徐州官方发布的内容。据@徐州发布 2月10日通报的事件调查处理情况,经有关部门对被锁女子(即“八孩母亲”)及其“家人”(母亲和同父异母的妹妹)进行DNA检验比对后,认定她就是这家人失散多年的女儿。

该通报一出,再次引发争议,部分网友质疑亲子鉴定的结果:被锁女子已经去世的“母亲”其生前遗物是否能提取到用来做鉴定的DNA?被锁女子就是董某民结婚证上登记的杨某侠吗?

实际上,大多数人可能对“亲子鉴定”一词并不陌生,影视剧作品里也常有 “滴血认亲” 和DNA医学检验的场景,而此次的社会事件,更是让大家关注起了“利用亲子鉴定用来确认被拐卖人口身份”的话题。

亲子鉴定怎么做?经历了哪些发展历程?“滴血”是否真的能“认亲”?本文作者商周为从事过遗传学研究的学者,黄巧娘则曾从事过亲子鉴定工作,从古代滴血认亲的历史讲起,他们为大家介绍了亲子鉴定的前世今生。

撰文 | 商周 黄巧娘

责编 | 王雨丹

●  ●  ●

在描述血缘关系的时候,我们通常会用 “血亲” “骨肉” “骨血” 等词汇,在西方也大抵如此。英语中的Consanguinity(血缘关系)和德语里的Blutsverwandtschaft(血亲)都来源于拉丁语的Cognatio一词,指的是通过出生而建立的关系。

亲子关系不仅事关感情,还涉及财产和地位的继承,所以这种关系的不明确会带来许多冲突和问题。为了解决或避免这种矛盾,人类历史上发明过诸多不同鉴定亲子关系的方法。比如,中国古代就有滴血认亲一说,通过观察 “两人的血是否相凝(合血法)” 或检测 “一个人的血是否可以渗入另一个人的骨头中(滴骨法)” 来判断亲子关系。虽然这种做法历史悠久,而且看上去融入了 “骨血” 的概念,但实际上它十分荒谬,毫无道理。

没有道理的认亲方法不仅出现在古代的中国。在中世纪的欧洲,判断一名男子是否是一个孩子父亲的方法之一,就是让他在医生、官员和牧师面前证明自己阴茎的勃起能力 [1]。即使到了科学日益昌明的18、19世纪的欧美,鉴别当事人是否为生父的方法也只停留在观察男子的精子是否有活力的水平之上 [1]。

人类之所以在鉴定亲子关系上束手无策,是因为对遗传学一无所知,不知道决定性状的基因,也不知道人的基因一半来自父亲、另一半来自母亲。等到孟德尔利用豌豆杂交实验开创了现代遗传学之后,亲子鉴定也就摆脱了蒙昧,迎来了新的纪元。

豌豆的黄绿圆皱和人类亲子鉴定,这两个事物看上去似乎毫不相关,但这恰恰是基础研究如何指导技术应用的一个典型例子。

亲子鉴定科学方法的演变

有趣的是,第一个科学的亲子鉴定方法还是和 “血” 有关,即血型分析。1900年奥地利科学家卡尔·兰德施泰纳(Karl Landsteiner ,1868-1943)发现了ABO血型系统(注:因为发现了A、B、O、AB四种血型中的前三种,兰德施泰纳在1930年获得了诺贝尔生理学或医学奖)[2]。二十多年后,德国科学家费利克斯·伯恩斯坦(Felix Bernstein,1878-1956)发现血型的遗传也遵循孟德尔法则,由一个包括IA、IB、i三个等位基因的位点所决定,其中IA和IB都是显性 [3]。

图1 血型的基因型和表型 | 绘图:商周

如上图所示,人类的ABO血型的基因型有六种:IAIA、IAi、IBIB、IBi,IAIB和ii,它们分别对应的血型是A、A、B、B、AB、O。知道了血型和基因型的关系,就可以通过血型来推导可能的基因型,并对父母和子女的基因关系做出判断。上世纪二十年代,这项技术就开始被用到了亲子鉴定里。

我们还是用实际情况来举例说明。

在没有代孕技术的年代,生母就是孩子的生物学母亲,所以亲子鉴定主要是检测父亲的身份。要鉴定一个男子是否为孩子生父,首先要做的是测定孩子和生母的血型,当这两个指标确定后,就可以去推断生父血型的可能性。

假设孩子的血型是A, 生母的血型也是A,那么生父的血型则可能是A、B、AB和O里的任何一种。在这种情况下,不仅无法确定一名男子是孩子的生父,也无法认定他不是孩子的生父(非父)。

但假设孩子血型是A,而生母的血型是B,那么生父的血型则只可能是A和AB,而不可能是B和O。如果一名男子的血型是B或O的话,他就肯定不是孩子的生父。在这种情况下,虽然同样不能确定一名男子就是孩子的生父,但在某些情况下可以将非父排除。

上面的表格里列出了孩子和生母血型的所有可能性组合,以及被鉴定男子可能是孩子生父(绿色)以及不可能是孩子生父(红色)两种情况下的血型分布。从上面这个总结表里可以看出,利用血型来进行亲子鉴定无法确定谁是孩子的生父,但有大约29%的概率能将非父排除。

这显然不是一个理想的结果。但作为亲子鉴定科学方法的先驱,它为后来的方法提供了借鉴。因为,血型分析之所以在亲子鉴定上表现不佳,主要是由于血型只取决于一个基因位点,而且这个位点只有三种等位基因,所以在多态性上非常有限。而要在方法上有所提高,就要提高所检测指标所代表的基因的多态性。

在之后发展起来的血清学分析和HLA(Human Leukocyte Antigen,人类白细胞抗原)分型就是在这样的思路下发展起来的。尤其是上世纪七十年代开发出来的HLA分型法,更是让亲子鉴定的准确性有了较大的提高。HLA是决定免疫反应的一类分子,主要功能是将抗原呈递给淋巴细胞。为了对付难以计数的外来病原体,HLA分子进化出了极高的多态性:不仅由多个基因编码,而且每个基因都有多个等位基因。利用HLA分型(注:指HLA抗原分型,而不是现在的HLA基因分型)虽然仍不能确定孩子的生父,但将排除非父的概率提高到了80%以上 [4]。

对具有高度多态性的HLA进行分型,却依然无法确定孩子的生父,主要原因是这样检测的依然是多态性有限的表型,而不是具有更高多态性的基因型。而当分子生物学有了长足的进展之后,基因水平的亲子鉴定方法也就被开发了出来。

首先使用的基因分析方法是上世纪八十年代出现的RFLP(Restriction Fragment Length Polymorphism,限制性内切酶片段长度多态性)[5],其原理是用限制性内切酶对被检测的DNA进行剪切,再根据剪切后的结果进行判断。限制性内切酶本来是细菌进化出来切割噬菌体(感染细菌的病毒)DNA的武器,比如最常见的EcoRI内切酶就来自大肠杆菌。当这些限制性内切酶被科学家发现后,它们就被用来作为剪切DNA的分子生物学工具。

如果把人的DNA比作一根长长的绳子,限制性内切酶就好比一把剪刀,它能够识别这根绳子上一些特异性的位点,并在这些地方把绳子剪成大小不一的片段。如果DNA这根绳子在某个识别位点上发生了变异,让限制性内切酶无法识别,那么它们在这里就剪不开。因为这种识别位点上的多态性,不同人的DNA在被同一种限制性内切酶剪切后,出现的片段数量和大小会有所不同。将多个限制性内切酶的剪切结果综合起来,就可以构成高精度的个人DNA图谱。正是因为这个DNA图谱的高度精确性,RFLP分析法不仅可以将非父排除,而且可以准确地认定谁是孩子的生父。

虽然RFLP分析法效力足够强大,但操作起来却很不方便。于是,出现后不到十年它便被另一种更具优势的基因分析方法代替:STR分析(Short Tandem Repeat,短串联重复序列)。STR分析方法出现于上世纪八十年代末,它的科学基础来自八十年代的两个分子生物学进展:PCR扩增技术和DNA上STR序列的发现 [6,7]。这种方便快捷的方法一经出现便迅速被应用到亲子鉴定领域中,并且一直沿用至今。

进入二十一世纪后,分子生物学进入了快速发展的车道,亲子鉴定在方法学上也有了更多的可能:比如单核苷酸多态性(Single Nucleotide Polymorphism,SNP)芯片分型和二代测序等更加现代的方法都先后被开发了出来。虽然这些更现代的方法功能非常强大,但并没有撼动STR分析法在这一领域的统治地位(主要是成本原因),只是偶尔在一些STR分析不适用的场合使用(比如胎儿无创亲子鉴定里,需要通过检测母体血液中游离的胎儿DNA来对胎儿进行基因分析)。

那么,在亲子鉴定领域一统江湖的STR分析法是如何工作的呢?

STR分析在亲子鉴定中的工作原理

STR指的是基因组上的一些短的DNA碱基序列(长度为1到6个或更多碱基)的简单连续重复,不同的重复次数导致了这一区域DNA碱基长度上的不同。这种重复的次数从几次到几十次不等,如果把控制血型的基因位点的三个等位基因A、B、O比喻成红黄绿三色的话,那STR位点的多态性就像一个有着诸多色彩的斑斓世界。单一位点上的高度多态性,再加上这样的位点在人类基因组上数以千计的存在,让STR分析成为了绘制高精度的DNA个性图谱的天然资源。在实际操作中(比如亲子鉴定),只需将含有STR位点的基因片段用PCR的方法进行扩增,然后通过检测所扩增出来的DNA片段的长度,就可以绘制一个人的个性DNA图谱。

正是因为其高精度、低成本和易操作的特性,STR分析便一直 “统治” 着亲子鉴定这一领域。

下面举个例子,来说明STR分析法是如何进行亲子鉴定的。

图2 STR分析用来做亲子鉴定的原理示意图 | 绘图:商周

如上图所示,假设孩子在某个STR位点上的基因型是(9重+6重)(1重指的是一个STR基本序列的一个重复), 生母的基因型是(9重+8重)。所以孩子的生父在这个STR位点上必须带有6重才行,比如带有(11重+6重)基因型的可能是生父,而带有(11重+2重)基因型的则为非父。

写到这里,有读者应该能看出来,单个的STR位点也无法认定谁是孩子的生父,同样只能把部分人鉴定为非父。举个例子,D3S1358是一个常用来做亲子鉴定的STR位点,这个位点的17重的等位基因在福建汉族人群中的概率是20%左右。假设被鉴定人必须携带D3S1358的17重才可能是孩子的生父的话,那么这一个位点的检测就可以把人群中60-70%左右的汉族男子作为非父排除掉。

虽然单个位点无法满足亲子鉴定的要求,但STR位点在基因组上数以千计,采用多个位点组合的办法就可以准确地完成亲子鉴定的任务。为了达到利用尽量少的STR位点就完成亲子鉴定的目的,被选来做分析的位点应该遵循三个基本原则:一是在当地的人群中有较高的多态性,方便提高分辨能力;二是多态性稳定(突变率小于0.2%),防止因为位点突变而带来的结果混淆;三是被选用的STR位点在整个基因组上相对均匀地分布,避免两个STR位点在同一染色体上靠得太近。

图3 亲子鉴定中常用的STR位点在基因组上的分布图 | 绘图:黄巧娘

在实际应用中,一般采用的是20个左右的具有高度多态性的STR位点组合,这种组合可以确定累计非父排除概率(Cumulative Probability of Exclusion, CPE),达到亲权鉴定技术规范的国家标准(GB∕T 37223-2018)。这里说的内容都是认定非父(母)的可能性,那么如何认定被检测人就是孩子的生父(母)呢?

要做到这一点,需要在上述基础上进一步评估被检者与孩子有亲生关系的可能性大小(亲权机会)。这里需要再引入一个概念:亲权指数( Paternity Index,PI),即亲权关系鉴定中判断遗传证据强度的指标,它表达的是被检测人是孩子生父(母)的概率与随机人是孩子生父(母)概率的比值。

假设被检测个体是孩子生父(母)的概率为 X, 随机个体是孩子生父(母)的概率为 Y,仍以上面提到的D3S1358位点为例,假设生父(母)必须携带的等位基因是D3S1358-17重,而被检测人的基因型是(17重+17重),他提供生父基因 D3S1358-17重的概率为1(即X=1)。随机男人提供生父基因 D3S1358-17的概率为该基因的频率(即Y=0.208)。因此,这里的亲权指数(PI)值为 1/0.208=4.808。如果被检人的确是孩子的生父,则不论检测多少位点,他都不会被认定为非父。所以当多个STR位点用于亲子鉴定时,假设每个位点的亲权指数分别为PI1,PI2,PI3,PI4……PIn,n个STR位点的亲权指数相乘则为累计亲权指数(Combined Paternity Index,CPI),即:

CPI=PI1×PI2×PI3×…×PIn

根据GB∕T 37223-2018亲权鉴定技术规范规定,鉴定使用的遗传标记累计非父排除效率≥99.99%,且累计亲权指数大于10000时,就可以支持被检测人是孩子生父(母)的判断。

从以上原理可以看出,如果检测样本有子女、母亲和父亲三方,那么达到亲子鉴定目的所需要的STR位点就会少一些,一般20个左右的STR位点检测就可以达到目的。而当检测样本只有子女和父母一方的时候(如子女-父亲、子女-母亲),需要的STR位点就会多一些,有时会出现20个位点检测后依然不能达到规范标准的情况,这时候就需要增加检测STR位点的数量。

但无论如何,利用STR位点的检测可以准确地判断子女和生父(母)的亲子关系。

亲子鉴定的实际应用和现实问题

作为一项精确的技术,亲子鉴定已经在我们的生活中得到了广泛的应用。由于亲子鉴定的结果有时可能会带来一些负面的社会问题,因此不少国家为亲子鉴定的应用范围制定了相应的法规,而且不同国家的规定也有所不同。

在现实生活中,我国的亲子鉴定技术经常被用于以下情形:

◆ 认亲、移民

◆ 继承财产、办理户口

◆ 被拐卖人口的身份确认

◆ 丈夫怀疑孩子不是亲生

◆ 怀疑在产房抱错婴儿

◆ 遇难者辨识:残骸身份确定

◆ 法医鉴定:犯罪嫌疑人证据配型

最近,因为 “徐州丰县生育八孩女子” 事件,亲子鉴定用来确认被拐卖人口身份的话题受到了人们的关注。根据@徐州发布2月10日发布的通报,相关部门对被锁女子(即“八孩母亲”)、光某英(小花梅同母异父妹妹)与普某玛(已去世,小花梅母亲)生前遗物进行DNA检验比对,结果为普某玛与被锁女子、光某英符合母女关系,结合调查走访、组织辨认,认定被锁女子即是小花梅 [8]。

可能是因为在这一事件上相关部门发出的通报有前后矛盾之处(比如之前的通报否定人口拐卖,但最近的通报却承认了这一事实),@徐州发布2月10日的这份通报甫一发布便遭到了一些网友的质疑。需要指出的是,部分网友质疑的并不是亲子鉴定技术本身,而是普某玛的生前遗物是否依然可以提取到用来做鉴定的DNA。

的确,只要普某玛的DNA顺利获得,那么她是不是被锁女子的生母肯定会有一个确定的答案。一般来说,用来进行身份鉴定的DNA样本来源可以多样,主要包括血液、毛囊、口腔黏膜、精液等。如果以上样本无法获得,那么其他一些和被检测人相关的间接样本也可以用来检测,比如穿过的衣物、嚼过的口香糖等,但关键是需要其中带有被检测人的细胞,而且不能存在他人细胞的污染。

那么,去世几年的人的遗物是否能提取到DNA并用来进行身份鉴定呢?这需要看具体情况,比如遗物上留有被检测人的血液,那应该就可行。但如果这些遗物上没有被检测人的细胞,或者这些遗物被他人使用过并留下了他人的细胞,那应该就不行。所以,在这件事情上,官方通报如果能给出一些细节,或者委托独立的第三方来进行检测,将会对事件的澄清有所帮助。

从被锁女子被拐卖的这一事件,还可以引申出另一个有关认亲鉴定的问题。因为被拐卖的人口(尤其是妇女)大多发生在上世纪,她们的父母已经部分离开了人世。所以,关于被拐卖人身份的认定,有时候会遇到这样一个问题:没有父母的DNA,是否还可以帮助他们找到自己的家?

要回答这个问题,我们需要回到亲子鉴定原理的核心部分:子女从父母双方各继承了一半基因。也就是说,子女的基因多态性肯定是从父母那里得到的,而且父母双方各一半。正是因为这种确定性,让判断子女与父母的关系成为了可能。

而当父母已经不在或无法准确获得其DNA的时候,兄弟姐妹的DNA可以用来做认亲的同胞关系鉴定吗?

从理论层面来看,就像当事人一样,他(她)的兄弟姐妹也都从父母那里各继承了一半的基因。但需要指出的是,每个人继承的那一半并不相同,这也是为什么兄弟姐妹间在外貌上可能相似但不会相同(单卵双生子除外)。所以,如果用亲子鉴定的方法去分析当事人和兄弟姐妹的DNA时,他们之间可能会在很多位点上有一致之处,但却无法百分之百确定二者就是来自同一父母,只能得出一个倾向性的结论。

在实践层面上,根据根据2021发布的《生物学全同胞关系鉴定技术规范》SF/T 0117-2021(下称 “规范”),全同胞鉴定可以进行。根据这个规范,19个STR位点是必检位点,还可以根据需要去补充更多的检测位点(注:检测位点越多,检测的效能越高)。被检测的二人在所检测位点的等位基因的一致性,或者是根据这个指标计算出来的同胞关系指数,就是评估他们是否为全同胞的指标。

我们可以用更容易理解的 “等位基因的一致性” 这个指标来做进一步说明。假如使用的是规范里规定的19个必检STR位点,它的效能是0.5655。19个位点一共有38个等位基因, 通过比较被检测两人在这38个等位基因的状态,可以得出累计状态一致(Combined Identity by State,CIBS)的数值。当这个数值大于22的时候,可以做出 “倾向于认为两名被鉴定人为全同胞” 的判断。假设检测的STR位点高达39个,检测的效能就可以提高到0.9782,CIBS大于40,也可以做出 “倾向于认为两名被鉴定人为全同胞” 的判断(如下表)。

信息来源:《生物学全同胞关系鉴定技术规范》SF/T 0117-2021

所以,无论是理论层面还是实践层面,全同胞的鉴定能给出的都是一个倾向性的结论。如果被用来鉴定的是同父异母或者同母异父的姐妹关系(或是更远一些的堂兄妹或表兄妹的关系),这种不确定性就会更大一些。

虽然无法100%肯定同胞关系,但这不妨碍帮助被拐卖人找回他们的亲人。还有一个办法就是增加被检的人数和检测的STR位点。在被检测人的选择上,最好包括所有的兄弟姐妹。如果兄弟姐妹也没有,那来自父母上方血缘关系最近的亲属也会有所帮助。当检测位点和人数足够多的情况下,凭借极高概率的倾向性结论,结合社会学因素,同样可以帮助被拐卖人找回自己的家庭。

正是因为STR分析技术的先进性和确定性,它已经成为了帮助被拐卖人口认亲的强大工具。目前,我国相关部门已经利用STR分析技术为部分因人口拐卖而失去骨肉的家庭建立了DNA库,以便和那些失散的儿童及妇女进行对比认亲。希望这一技术能帮助尽量多的失散者找回自己的父母家人,重新享受家庭的幸福。

当然,最好,这样的 “失散” 不再发生。

制版编辑 | 姜丝鸭

PCR扩增仪(俗称PCR仪)

PCR:PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。

PCR仪实际就是一个温控设备,能在95℃,55℃,72℃之间很好地进行温度控制。

PCR扩增仪又称为PCR基因扩增仪、PCR核酸扩增仪、聚合酶链反应核酸扩增仪,是利用PCR(Polymerase chain reaction,聚合酶链反应)技术对特定DNA扩增的一种仪器设备,被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。根据DNA扩增的目的和检测的标准,可以将PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。

1). 普通PCR仪(2万以下,赛默飞、伯乐、大龙,艾本德)

一次PCR扩增只能运行一个特定退火温度的PCR仪称作传统PCR仪,也叫普通PCR仪。如果要做不同的退火温度需要多次运行。主要是用于简单的、对目的基因退火温度的扩增。该仪器主要应用于科学研究、教学、医学临床、检验检疫等机构。

如:启步BSW-2P,BSW-3P,BSW-6P-I/II ,ABI 2720型

图1.普通PCR仪外观图

2). 梯度PCR仪(2万-8万,赛默飞、伯乐、大龙,艾本德)

一次性PCR扩增可以设置一系列不同的退火温度条件(温度梯度,通常有12种温度梯度)的PCR仪称作梯度PCR仪。因为被扩增的不同DNA片段,其最适退火温度是不同的,通过设置一系列的梯度退火温度进行扩增,从而一次性PCR扩增,就可以筛选出表达量高的最适退火温度,进行有效的扩增。用于研究未知DNA退火温度的扩增,这样节约成本的同时也节约了时间。梯度PCR仪在不设置梯度的情况下也可以做普通PCR扩增。主要应用于科研、教学机构。

梯度PCR仪主要用于研究未知DNA退火温度的扩增,这样既节约时间,也节约成本。在不设置梯度的情况下亦可当做普通的PCR用。梯度PCR仪多应用于科研、教学机构,检验、检疫等。

如:ABI 9700,ABI Veriti, Bio-Rad T100 PCR仪

图2.梯度PCR仪外观图

3). 原位PCR仪(2-10万,朗基,伯乐,塞斯恩,博日)

用于从细胞内靶DNA的定位分析的细胞内基因扩增仪称作原位PCR仪。如病源基因在细胞的位置或目的基因在细胞内的作用位置等。是保持细胞或组织的完整性,使PCR反应体系渗透到组织和细胞中,在细胞的靶DNA所在位置上进行基因扩增。不但可以检测到靶DNA,又能标出靶序列在细胞内的位置,对于在分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有重大的实用价值。主要应用于临床、科研。

原位PCR仪,主要应用于:(1)检测外源性基因片段,提高检出率,集中在病毒感染的检查上,如HIV、HPV、HBV、CMV等;(2)观察病原体在体内分布规律(3)内源性基因片段,如人体的单基因病、重组基因、易位的染色体、Ig的mRNA片段、癌基因片段等。(4)检测导入基因;(5) 遗传病基因检测如β-地中海贫血。

图3.原位PCR仪外观图

4). 实时荧光定量PCR仪(2-10万,聚创环保,雅睿,伯乐)

在普通PCR仪的基础上增加一个荧光信号采集系统和计算机分析处理系统的PCR仪称作荧光定量PCR仪。其PCR扩增原理和普通PCR仪扩增原理相同,只是PCR扩增时加入的引物是利用同位素、荧光素等进行标记,使用引物和荧光探针同时与模板特异性结合扩增。扩增的结果通过荧光信号采集系统实时采集信号连接输送到计算机分析处理系统得出量化的实时结果输出。把这种PCR仪叫做实时荧光定量PCR仪(qPCR仪)。

荧光定量PCR仪有单通道、双通道和多通道。当只用一种荧光探针标记的时候,选用单通道,有多荧光标记的时候用多通道。单通道也可以检测多荧光的标记的目的基因表达产物,因为一次只能检测一种目的基因的扩增量,需多次扩增才能检测完不同目的基因片段的量。主要用于医学临床检测、生物医药研发、食品行业、科研院校等机构。 荧光定量PCR仪主要应用于临床医学检测、生物医药研发、食品行业、科研院校等。荧光定量检测技术在临床诊断方面很多,主要集中在各种病原体引起疾病的临床诊断,如肝炎类疾病、性病、与优生优育相关的疾病以及肺结核等等。

图4.实时荧光定量PCR仪外观图


亲子鉴定技术pcr(亲子鉴定技术可靠吗)

文章内容可能有引用其它网络内容,如有侵害您的权益,请联系我们免费删除:https://www.whnhnc.com/dna/

  • 细胞存储问答
  • 亲子鉴定了解
  • 细胞应用咨询
  • 基因检测咨询
  • 其它百科咨询
微信扫一扫

Copyright@2011-2018 All Rights Reserved 版权所有: © 2020 武汉诺和诺诚生物科技有限公司 鄂ICP备2022020202号-5

首页 / 亲子鉴定 / 细胞储存 /服务项目 /